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Local nonequilibrium effect on undercooling in rapid solidification of alloys
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A local nonequilibrium approach to rapid solidification of undercooled alloys is presented. Taking into
account the finite speed of mass signals, a steady-state solution to the nonisothermal rapid solidification
problem has been obtained. We have found that, if the solidification front moves at a v&iasifyal to or
higher than the diffusive speads in the liquid, a partitionless thermal-controlled situation takes place. The
solidification mechanism changes\&t V5 and the constitutional undercooling is lacking ahead of the solidi-
fication front. Some comparisons with the known experimental and theoretical results are discussed.
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I. INTRODUCTION The main purpose of the present article is to obtain the

undercoolings at the solidification front and in the liquid

Considerable study has been given recently to the prophase under local nonequilibrium conditions. The article is
cesses of rapid solidification, which leads to a wide spectrunorganized as follows. In Sec. Il we consider the general
of applications for production of novel materials with the model which takes into account the deviation from the local
advent of new sophisticated technologies such as laser aragjuilibrium of the diffusion field inside the phases and at the

electron beam treatment of surfaces, quenching from the ligsolidification front. This model incorporates the diffusive
uid state, and the levitation techniglie2]. The most impor-  speedV, as the most decisive parameter governing the sol-
tant practical results of rapid solidification are the formationute concentration field in the bulk phases. In Sec. Il we
of homogeneous solid solutions and morphological transiconsider an important case of steady-state regime of solidi-
tions in growth forms of crystalgl—4]. fication, and in Sec. IV we accentuate the undercooling in
It is well known that rapid solidification and recrysta”iza' the ||qu|d phase ahead Of the Solidiﬁcation front_ Our ap_
tion occur under conditions that are far from local equilib- hroach is applied to the case of flat liquid-solid interface
rium [1-7]. However, as a rule, existing theoretical treat- motion and we perform an analysis of the undercooling in-

ments take into account only the deviation from chemicaky,ence on the transition from diffusion-limited growth to the
equilibrium at the interface introducing the velocity depen-yhema| and kinetic regimes of rapid solidification. In Sec. V,

dent partition coefficienk(V), whereV is the velocity of the on the basis of our model we give the numerical estimates of

solidification front mouor{ll_O—_la..AII aspects of the mod- undercoolings and solute partitioning for Ag-Cu and Si-As
els assume the local equilibrium in the bulk phases and relgilute alloys. A summary is given in Sec. VI

on classical irreversible thermodynamics by Onsager an
Prigogine. Such a modeling is only valid for a relatively low
interface velocit/<V 5, whereV | is the diffusive speed in
the liquid, i.e., the maximum speed of propagation of the Il. THE MODEL
concentrational perturbations. In this case, classical thermo-
dynamics and the transport theory give reliable results fo
most situations encountered in practjds.

The new approach to local nonequilibrium heat-mass
transfer is nowadays generally referred to as extended irre-

Solidification of undercooled melts can be so fast that th%lleémbledthertrr?odynba_lmltcs fby Jqu, Cas_as-\(atzquetz, _?Ed Lebon
interface velocityV is of the order of or even greater than the ] and is the subjec of an increasing interest. there are
diffusive speedv in the bulk liquid (=L) or solid (=S) some other methods which also do not adopt the local equi-
[1-4,7. In these cases there is no local equilibrium in thellPrium assumptior(see, for example,13,14,19, and refer-

bulk phases and the solute flux cannot be described by tHeces therein These theories lead to Fourier's and Fick's
classical mass transport theory. Thus one should take int@eneralized laws by including relaxation effects, which con-
account the deviations from local equilibrium in phasesVert the ordinary constitutive equations for the heat and mass
which affect both the solute diffusion field and the interfacefluxes into evolution equations for these quantities.

kinetics. Our theoretical treatmerjts3—17 have shown that Let us consider the nonisothermal movement of the
in rapid solidification the diffusion field in alloyg¢and in  liquid-solid interface in a diluted chemically inert binary al-
some special cases the thermal field in pure substaisciss  loy. Using the relaxational approa¢h3,18 to the problem
from local equilibrium. In these situations the concentrationof local nonequilibrium diffusion mass transport during so-
(temperaturgand its flux differ significantly from those pre- lidification [4,15,17,2Q9, we may write Fick’'s generalized
dicted by the classical local equilibrium theory. law as

1063-651X/97/561)/34310)/$10.00 55 343 © 1997 The American Physical Society



344 PETER GALENKO AND SERGEI SOBOLEV 55

AL concentrational perturbations, but the normal velocity
Ji+p - TDivGi=0. (2.)  v=(n-V) of the liquid-solid interface can be greater than
Vi,
Here index is relative to the liquid phase €L) or the solid The simple numerical estimates of quenching from the

one (=9); C; is the mass concentration of the dissolvedliquid state have showfi5] that the sc_JIidif_ication velocity/
component in a binary diluted alloy: is the vector of the May be close to the spead}; of the diffusive speed even at
diffusion flux of the dissolved componentl, is the time of ~ €00ling rates of 16-10° K/s and local-nonequilibrium ef-
diffusional relaxation of the collective of atonfsiolecules, ~[€CtS appear in a solidifying alloy.
particles to their equilibrium state in a local volume of al-  Recently we have discussed the coupled transfer pro-
loy; D, is the diffusion coefficient. cesses which have different space-time scales in a no_nlocal
Equation(2.1) can be treated as the simplest genera|iza_med|um[4,13,1£§. For the nonlsoyhermal rapid _soI|d|f|<_:at|on
tion of the classical Fick law for mass transport in both©f undercooled alloys we can give the following estimates.
phases, which takes into account the relaxation to local equilVhen the thermal conductivity of the alloy is determined by
librium of the mass flux. As it follows from Eq2.1), the ~ the phonon oscillation in the solid phase, moleculanic)
concentration gradier¥ C, at a point of alloy defines a mass diffusion in a liquid or electron transfer, then thermal relax-
flux not at timet as in the local-equilibrium approximation 2ation in the alloy takes place at a speég~ 10°-10¢° mis.

but with a delay equal to the relaxation timé Using typical values of the diffusion coefficient
' — 1010 11 2 H H
The mass transfer in both phases is governed by the bai=10  ~10"~ m7s —and a _relaxation fime
ance law Tp=10 "-10 " s (see, for examplg8]) for the diffusive

speedV}, we haveVh=(D;/75)¥?=0.1-10 m/s. In any
i case, the ratio/ h/Vy is low: V/V;~102-10"°. It fol-
7+V'Ji=0- (2.2 lows from this that the local equilibrium in the thermal field
of alloys establishes much faster than the local equilibrium
of the diffusion field. In this connection, we may describe the
heat transfer in both phases as it is governed by the classical
local equilibrium heat conduction equation with heat source

In contrast with Fick’s law, which leads to the diffusion
equation of parabolic type, Eq&.1) and(2.2) give rise to
the hyperbolic equation for the solute concentrafib8—20

aCi  9°C x-ﬁ—Ti:V-()\-VT-)nLQVﬁ(r—R) (2.4)
W‘FTD WZV(D|VC|) (23) | at [ | ! )

Equation(2.3) is the simplest mathematical model combin- where@(r—R) is the Dlra_c d.elta function wh|ch_depends on
ing the diffusive (dissipativé mode and the propagative € radius vector of a pointin alloy and the radius vectgr
(wave mode of mass transport under local nonequilibrium®f the interface positionT is the temperaturex and\ are
conditions. This equation implies a finite speed e heatcapacity and thermal conductivity, respectiv@lys

| =(D./75)Y2 of concentrational perturbations. We can the latent heat of solidification. - .
also consider the spead}, as a maximum speed at which To derive the |r_1te_rf_ace_ conditions, we integrate E@Q) :
the diffusional perturbations can propagate in the phases. an(_j (2.'4) over an |nf|.n|teS|maI zone _that includes the liquid-

The local equilibrium solidification takes place when the SClid interface. The interface conditions are
time r5=D,/(V})? of the local diffusion relaxation of the
chemical composition is essentially less than the characteris-
tic solidification timers=D,/V2, whereV=(n-V) is the nor- L
mal velocity of the liquid-solid interfacen is the normal n-(J—VCj)|s=0. (2.9
interface vector pointed towards the malt;is the vector of ) o
the solidification front velocity, and-) is the scalar product After differentiating Eq.(2.6) by t, we have
of vectors. In this case, the time of relaxation becomes in-
finitesimal TiD—>0 and Egs.(2.1) and (2.3 describe Fick's i N ‘9Ci) «n|"=0 2.7)
diffusion transfer in the local equilibrium limits. Thus the s '
transition to the classical Fick law occurs ag,—0,
b—, i.e., when the diffusive speed|, is maximum in  Then, subtracting Eq92.6) and (2.7) and combining the
comparison with the liquid-solid interface velocit result with Eq.(2.1) we obtain

When the solidification front moves with a higher veloc-
ity, V~Vp, local equilibrium, strictly speaking, does not oc-
cur and the mass flux does not depend on the instant value of
the chemical composition gradient but is determined by the
local prehistory of the mass transfer in the solidifying alloy Note that the relaxation effects lead to the fact that condition
[see Refs[13-15 and Eq.(2.1)]. The case &V<Vp cor- (2.8 includes not only the interface velocity, but also the
responds to intermediate regimes of the alloy solidificationinterface acceleratiosV/at [17].
from a metastable liquid phase to a stable solid one when The connection between the interface temperature
there may be derivations of concentrations from their locall,=T =Tg and the concentratio@, is given ag1-4]
equilibrium values described by a Boltzmann-type distribu-
tion. It should be noted that, limits only the speed of T,=Ta—m(V)C_ —VI/By—TK, (2.9

n-(\VT)5+(n-V)Q=0, T, =Tg, (2.5

a Cia Vo

i
D

- aC
Ci+mV — nls=0. (2.9

V+7 ﬂ
D ot

[DiVCpL
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Cs=k(V)CL, &0 Di[1-V2/(V5)2] (L?C'Jrv CL—(;=0, (3.2

where T, is the temperature of solidification of the alloy
main componenty is the normal interface velocity in the
vector n direction; I" is a capillarity constant which equals
Tay/Q; vyis the surface tension of the liquid-solid interface;
K is the mean curvature of the liquid-solid interfag®; is
the kinetic coefficient of interface motiom is the tangent of

where a; = \;/x; is the thermal diffusivity. We can get the
conditions on the solidification front=0) from boundary
conditions(2.5) and(2.8). They are

the nonequilibrium liquidus line slope which depends on the As d_TS_)\L dn —QV, (3.3
interface velocity;k is the nonequilibrium partition coeffi- dé dé
cient which also depends on the interface velocity and de-
fines the solute trapping. R (o]
Thus Egs(2.3) and(2.4) of heat-mass transfer with inter- VC +D[1-V/(Vp)] d_g
face conditiong2.5), (2.8)—(2.10, and the function&, K, m
describe the problem of rapid solidification under local- _ 5,512, 4Cs
nonequilibrium conditions. =VCst+Dd1-V/(Vp)“] e (3.4
lIl. THE STEADY-STATE REGIME The boundary conditions far from the solidification front are
Now let us obtain a steady-state solution of the set of Eqs. dc
(2.3 and(2.4). We view the solidification from a reference T(®)=Ty, Cp(®)=Cy, - =0. (3.5
frame attached to a solidification front moving at a constant déf, .

velocity V in the é&=x—Vt direction. Here we neglect the

temperature dependence of the diffusion coefficient in both The solutions of Eqs3.1) and(3.2) which satisfy condi-
the liquid ((=L) and the solid (=S). In this version, Egs. tions(3.3), (3.4), and (3.5 arethe solid phasé£<0)

(2.3) and(2.4) of heat and mass transfer have the form

dZTi \Vj dTi QV Ts(g):-ﬂ ) Cs(§)=C0, (3.6

a2 o g Ty, 2970 BB ndthe liquid phase£0)
TL(§)=T0+(T|—To)exp< - %) (3.79
v
co+(cl—c0)exp<— 52 — ) V<V§
CL(&)= D[1-V(Vp)7] (3.70
Co, V=V§

wherea, is the thermal diffusivity in the liquid an@, is a 189, an expression fosy in a local nonequilibrium situa-

concentration of the liquid at the solidification front. tion can be obtained. Froi3.7b we can get
Solutions(3.6) and (3.73 for temperature have the usual

steady-state profiles in both pha$@4] except for the value 2D [1-V?/(V5)?1IV, V<V§

of T,. However, concentration distributiof8.70) differs 5p= 0, VEVE (3.8

substantially from those predicted by the classical parabolic
diffusion equation. As it has been shoytb] and following
solution (3.7, when the solidification front motion ap-
proaches the diffusive speed—V, the concentration in
the liquid reaches the initial concentration of an alloy, i.e.
C,—C, for any 0<¢<<o. Moreover, there is no solute dif-
fusion in the liquid and the solidification process cannot beto
controlled by the solute redistribution ahead of the solidifi-
cation _front atV=V§ [see Eq.(3._7b) and Ref.[17]]. This DL[l—Vzl(VE)z], V<VE
result is in good agreement with the recent experiments D* = (3.9
[22,23, which observe almost partitionlegdiffusionless 0, VZVE .
solidification if undercoolings exceed a critical undercooling.

Following the standard method of definition of the diffu- If V<V&§, the effective diffusion coefficienD* reduces to
sion layerdp ahead of the solidification frorisee Ref[1], p.  the diffusion coefficienD, for the local equilibrium condi-

As follows from Eq.(3.8), when the velocity increases, the
solute layersy ahead of the front shrinks more rapidly than
expected from the classical mass transport théseg Fig. 1
'in which 6,=2D,/V>0 for any values//V§.

The behavior of the solute concentratigh7b allows us
introduce the effective diffusion coefficieBt* as[17]
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FIG. 1. Curve 1 is the dependence of the dimensionless diffu- ¢
. e e ; L
sion layer 85/5p and diffusion coefficienD*/D_ as a function DIMENSTONLESS VELOCITY V/Vn

f(VIVE)=6%5/6p=D*ID =1—V?/(V5)? on the dimensionless
velocity V/V',5. Curves 2 and 3 indicate the concentrational jump
[C]/Cy=(1—Kk)/k on the solidification front, where the interface
partition coefficientk was used from Aziz’'s moddll2] (curve 2
and present equatiof3.12 (curve 3. ke=0.5.

FIG. 2. Curves showing the dependence of the interface parti-
tion coefficientk on the dimensionless velociy/V 5 according to
the models of various investigatork.&0.1).

wherek, is the value of the equilibrium partition coefficient
atV<Vp.
The known models by Jackson, Gilmer, and Ledi),

tions. But wherV is of the order ofV §, there is an essential
difference betweerD, and D*. The ratioD*/D, is de-
creased by the parabolic law as-¥?/(V5)? in the velocit . . .
region 0<¥/<VE and equals zero al(z\D/)E (see Fig. L y W(.)Od[ll]’ Aziz [12] and ex.p.res'smfe.l()) predict the tr.ar.1-
The effective diffusion coefficient3.9) includes the local ?mo_n tofan eq“:"bf'“f(‘/ pe\l/rt!tlon;]ngﬁﬁe, at 3 IIOW SQI'd.g
nonequilibrium effects and can be used to modify some refication ro_n_t velocity,V<Vp, where the mo _e S concide.
sults of the local nonequilibrium theory. For example, the |N€ transition to complete solute trapping=1, in the
use ofD* in the form of Eq.(3.9) leads to the generalized above mentioned mode[40—17 occurs only at infinite in-
partition coefficien{17] terface velocity,V— . However, expressio3.10 clearly
demonstrates that the transition to complete solute trapping,

K 1—V2I(VE)2]+ VIV k=1, occurs aV=Vp (see Fig. 2

ERVITy SvaRyTviat <Vp Now let us consider the concentration profiles in more
k= —V7(Vp)"+VIVp (310  detail. Using expressiof3.10, we rewrite solutions(3.6)
1, V=Vjp and (3.7 in the form
|

Cq(é<0)=C, for any V, (3.113

(1-ke)[1-VZ(Vp)?] &v L

+ _\/2 L2 C eXp — “\/2 CN\2 ) V<VD
CL(£>0)= ke[1—=V</(Vp)“]+VIVp D[1-V(Vp)] (3.11h

Co,

In the limits V/V5—0, the solution(3.11b reduces to the
local equilibrium solution obtained by Ivantsd24] and

V=Vg.

In the local nonequilibrium approach, solutié®@11), Eq.

(3.10 and condition(2.10 give an expression for the con-

Tiller et al. [25]. As the ratioV/V§ increases, the solute centration jump €]=C (0)—Cg(0) at the front. The jump
concentrationC, (0) at the interface will decrease. When 'S

V=V, the concentration in both phases has the initial com-

position of an alloyCg(£)=C, (&) =C, (Fig. 3). Note that

this result differs fundamentally from the classical local-

equilibrium case wher€, (£)—C, only whenV—x (see,
for example, Ref[26]).

Co(1—ke)[1-VZ(Vp)?]
ke[ 1—V2/(VE)2]+VIVE '
01

<Vjp

[C]=

' (3.12
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3 &v
AT(E=0)=ATy— (ATy—AT—ATy)expg — o/
$ 1 L
< e V=Vp. (4.3b
2
2 Here
o 4,23
4
k Ns ATo=Ta—meCo—Tp (4.9
2
b is the initial (base undercooling in the liquid phase far from
§ o ) 5 ) , ) the solidification frontm, is the tangent of the equilibrium
-2 -4 o 1 2 3 4 liquidus line slope,
5V
DPIFFUSION LENGTHS
b [1-VE/(V})?] mCo(1—k)/k, V<V5

ATe=m[C]= 4.
c=m(C] 0, V=Vh @9
FIG. 3. The solute profiles computed for different values of the

dimensionless velocity/Vp: 1—V/VE=0.001; 2-V/V5=0.5; s the preexponential factor of the constitutional undercool-

3—V/VE=1. k,=0.5. Distance¢ has been nondimensionalized ing [see the second term in the right side of £4.33]

with respect to diffusion lengttD, [1—V?/(Vp)?]/V. caused by the solute redistribution in the liquid phase ahead
of the solidification front,AT- has a meaning of the non-

As expression(3.12 predicts, an alloy has equal concentra-equilibrium temperature interval of solidification on the ki-

tions, C(0)=Cg(0), on thesolidification front atv=V}§  netic phase diagram of the alloy,

(see Fig. 1L This means that the lines of nonequilibrium

liquidus and solidus will comcuLje on the kinetic phase dia- AT =VI(BVE) (4.6)

gram at the finite velocitie¥ =V g of the solidification of an

alloy. is the kinetic undercooling on the solidification front,

B=PB,/V5 is the ratio of the kinetic coefficiens, and the

diffusional speed/§, and
IV. UNDERCOOLING DISTRIBUTION

IN THE LIQUID PHASE

. N ) ATy=(m—=mg)Co 4.7
Now let us examine the undercoolidgrl in the bulk lig-

uid and at the solidification front, whet®T is a difference is the undercooling defined by the difference between the
between the temperatullg, of liquid on the kinetic diagram equilibrium  liquidus temperaturd ,—myC, and the non-
of alloy state and the true temperatdigin the temperature equilibrium liquidus temperaturd ,—mGC, on the kinetic

field. Then we have the relation phase diagram.
As follows from Eq.(4.3), the liquid is undercooled on
the solidification front(é=0) and far from it(é—~):
AT(E=0)=Tq(&) —TL(§), 4.1
ATK+ATN, §=0
where “laT,, £roo, (4.9
Tig(§)=Ta—mC.(§) (4.2  Condition(4.8) is different from the classical solution of the

constitutional undercooling problef24,25,27 in which the
liquid is undercooled, but the solidification front and infinite
is the equation of the nonequilibrium liquidus line on the point in liquid are in equilibrium AT,=AT,=ATy=0). In
kinetic phase diagram. the local-equilibrium approximationy<V, , and under the
Substituting Eqs(2.9), (2.10, (3.73, (3.70), and(4.2) for  conditions T,=T,—mC,, m—m, the general solution
Eq. (4.1, for the case of the flat solidification frorithe (4.33 reduces to the known Borisov express{@7] which
mean curvature of the solid-liquid interface is zero, i.e.,was obtained on the basis of Ivantsov’s soluti@d] (a dis-
K=0) we obtain the expression cussion about this local-equilibrium expression is also given
in Ref.[4], p. 107.

&V £V Solutions(3.6) and(3.73, consistently with the tempera-
AT(£=0)=AT, 1—ex;{ ——||+ATc ex;{ — _) ture balancd3.3), give the temperaturg, on the solidifica-
a a tion front,
&v
P T D I1-VI(VE)T T,=To+To, 4.9

&V whereTo=Q/ % is the temperature of adiabatic solidifica-

+(ATK+ATN)exp< — a—) , V<VE, (4.33 tion. Having equated the two expressid@sd) and(4.9), the
L
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initial undercoolingAT, on the flat solidification front K AIE

Ta=m,C, ~T
=0) can be divided into the next parts, r:lc_. i‘\ aTv
. 'n’o/kq 4T \\\
ATo=Tao—meCy—Ty WV S o
TomC-Vj =~ e
F WG VAL ~
ATt+HAT+HAT+ATy, V<V§ N AL A < aT,
= (4.10 ¢ z \
ATr+AT+ATy, V=V 2
- m _ aT,
whereAT;=Tg is the purely thermal undercooling. We can & K NS T
conclude that as it follows from Eq&4.5—(4.7) and(4.10), o T
the constant velocity of the solidification front is possible ° a
(nonzero kinetics of the attachment of atoms at the solidifi- C"., c'»,,< c' 7k
cation front,vV>0) if composItTion C ‘
ATo>AT+ATc+ATy KN
~ o a7,
=T+ MCo(1—K)/k+(m—mg)Cy, V<V§ NN !
(4.1 S .
ATo>AT+ATy=To+(M—mg)Co, V=V5. "W N oT,
Under these conditions the solidification front can move in 2 T
the steady-state regime. g
Figure 4 shows kinetic phase diagrams in the coordinates’ § a7,
“temperature-chemical composition” in the steady-state re- ¥ m
gime of local nonequilibrium solidification of a dilute alloy. T b
In connection with Eqs(4.4)—(4.10), the ratio between the c VT
contributions of the undercoolingsT+, ATy, AT, ATy to ® comPOSITION C

the total undercoolingAT, at V<V§ is shown[see Fig.
4(a)]. It is evident that in this case the interval of solidifica- F|G. 4. Determination of different contributions
tion is shorter than in the equilibrium situation, (AT, AT, ,ATc,ATy) into the total undercoolind T, on a part
ATc=mCy(1—K)/K<ATZ=mCo(1—K)/K.. This dem-  of the kinetic phase diagram of a dilute alloy. Equilibrium diagram
onstrates a tendency to formation of more homogeneous abf phase state defined by the lines of the liquidus and solidus which
loys as the solidification velocity increases in the range have the slopems, andmg/k,., respectively. Dotted line represents
0<V<VE. Then, with finite solidification velocities, the line that connects the melting poifi§ of the main alloy com-
V;VL, the confluence of nonequilibrium lines of liquidus ponent with the interface composition in the liquid in the absence of
and solidus occurksee Fig. 4b)]. In this case the solidifica- the interface attachment kinetic effect. Nonequilibrium liquidus and
tion of the alloy proceeds without changing its chemicalsolidus lines in the presence of the interface attachment kinetic
composition,C, (0)=Cg(0)=C,, at the front and with a effect have the slopesi(V) andm(V)/k(V), respectively(a) Ef-
constant slopen* of the nonequilibrium line of solidifica- fept of IocaI. nonequilibrium on composition in the liquid phase for
tion, Fig. 4b). As follows from Eq.(3.7b), at VBVE the given velpcny 0<V<V} at the.s.,olidificati.on front and in the sol-
concentration in the liquid phase is also equal to the initialUte diffusion field. The composition of solid & under the steady-
one, C_(£)=C,. Hence the solidification of the alloy will s_tatg regime and at the self-consistent temperatuia the solidi-
proceed completely partitionless with the initial chemical1Sation front,T;=To+ To=Ta—mCo/k—V/ 5. (b) Confluence of
composition. This conclusion is in agreement with the resultd"® Noneauilibrium liquidus and solidus lines into one line with the
. . . slopem* at V=V p. Temperature intervah T of nonequilibrium
in [28], where on the basis of molecular dynamics computer lidification is zero. Value of the Kineti q T in-
simulation techniques it has been shown that the complet%caOI reation 1S zefo. vaiue ol the KInefic undereoo Iagryc in
- . A reases as the velocity increases.
solute trapping occurs when the liquid-solid interface veloc-
ity attained its critical steady-state value.

Our treatment of the undercoolings lends strong supporto the initial undercoolindA T, and the kinetic terms such as
to the idea that the diffusive speatk is one of the most ATy and ATy. As follows from Eg.(4.3), at the critical
decisive parameters in rapid solidification processes. As wpointV=V g a transition from a diffusion-limited to a purely
showed, the distribution of the undercoolidd (é=0) and thermally and kinetically controlled growth occurs. Such a
the initial undercoolingAT, have the constitutional under- transition has been observed in experiments on rapid solidi-
cooling only atV<V} [see Eqs(4.3.1) and (4.10]. When fication of undercooled alloyg,5,7,8,23,29,3D This result
V=V, the constitutional undercooling is zefsee Eqs. has a clear physical meaning. A source of concentrational
(4.5 and (4.10]. In the latter case, i.e., when the homoge-perturbations, i.e., liquid-solid interface, moving at a velocity
neity of the solute distribution in the liquid phase occurs,equal to or higher than the maximum speed of these pertur-
CL(£>0)=C,, the flat solidification front will be absolutely bations cannot disturb the alloy ahead of itself. Therefore
stable relative to the constitutional undercooling because oivhen the interface velocity/ passes through the critical
its lacking. point V=V the solidification mechanism changes qualita-

Thus if the front velocityV is higher than the diffusive tively, and the undercooling in liquid will not depend on the
speedV | the distribution of undercooling in the liquid is due solute diffusive profile.
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V. DISCUSSION . .

Now let us consider undercooling on the front and in the
liquid under local nonequilibrium conditions in more detail.

For the numerical estimates, we decided to take a Ag-Cu
dilute alloy which is often used in the rapid solidification
processes. In our calculations we choose the next physical
constants: k,=0.44, my,=6.46 K/wt%, D, =2.1x10°
cnls, To=12335 K, To=337 K, B;=10 (cm/s9/K
[9,31,33. Here we give the estimate of the diffusive velocity
asV5=D,/l,=170 cm/s, wheré, is a length scale related
to the interatomic distance equal to 1.2GE) ' cm. We
shall calculate undercoolings in a Ag—1 wt % Cu alloy at the a)
initial temperature ofl ;=850 K. 0 5 % e P 10

For the total definition of undercoolings, we shall use an
expression for the nonequilibrium liquidus line slomede-
pendent on the partition coefficiekt[1,2]. This yields

aT/ Tq

UNDERCOOLING

THERMAL LENGTHS 'gV/cLL

0.030 T T T T

AT/TQ

m=my 1+1_Lke{ke—k[1—|n(k/ke)]} . (5.1

o
[
I
]
T
[re
[~

The insertion of Eq(3.10 into Eq.(5.1) for the generalized
partiEion coefficienk gives direct dependenee on the ratio
VIVp.

The distribution of undercoolings in the liquid phase and
at the solidification front is defined by the set of equations
(4.3 —(4.10 and(5.1) with inequalities(4.11). The results of
calculation of the undercoolin§T(¢) in liquid are plotted in 0,005 4
Fig. 5. The undercoolingdT., ATy, andATy at the so- by
lidification front are plotted versus the ratidV, in Fig. 6. : . : :

The undercoolingA T(£) has a smooth profile on the heat ° 2 4 6 8 40
lengths, a,/V, which do not depend on the variation of DIFFUSION LENGTHS EEVZ___
the ratioV/V 5 [see Fig. 8a)]. In the meantime, the distribu- 2,04 -V /V5?
tion of undercooling AT(¢) on the diffusion lengths,

D.[1-V?/(VE)?]/V, is changed from the local equilibrium FIG. 5. The undercoolind T(£) distribution in the liquid phase
smooth profild V<V, see curve 1 in Fig.(®)] to the con-  0f Ag—1 wt % Cu alloy on the thermas) and diffusion(b) lengths.
stant value only due to the kinetic undercooling on the frontDistance¢ has been nondimensionalized with respect to thermal
¢=0[V=VE, curve 3 in Fig. §b)]. This change occurs at an 'ength,a./V, and diffusion lengthD [1—V?/(Vp)?)/V.

almost zero value of the kinetic sutiT,+ ATy on the so-

lidification front (at V<V ) up to the zero value of the con- has been observed experimentally by Walder and Ri&i&r
stitutional undercooling in liquidat V=V ) (see Fig. 6. In  on a rapid crystal growth from undercooled Ag-Cu melts.
this case the nonequilibrium interval of solidificatiahT -, Possible transition to thermal growing structures in alloys
degenerates into zero, and the alloy composition corresponds directly connected with the solute partitioning process and
to a point on the line with a constant slope the beginning of the partitionless solidification. As we quali-
m* = (mplnk.)/(ke—1) [see Eq(5.1) atk=1] on the kinetic  tatively showed in Fig. 2, local-nonequilibrium effects sig-
diagram of solidification, Fig. @). nificantly influence the solute partitioning. For quantitative

Notwithstanding the fact that &t<V | the value of the demonstration of this influence we can use the results of Kittl
undercoolingAT(£) at any pointé near the front is not et al’s experimental measuremen@5] on Si-As dilute al-
higher than 3% of the initial undercoolil§T, (see Figs. 5 loy solidification. In Fig. 7 the partition coefficierit is
and 6, it is the inhomogeneity of the distributiakT(£) that  shown as a function of the solidification velochy In com-
leads to the instability of the flat front of solidification parison with the experimendB5] we correlate two models,
[3,33,34. In this situation, growing structures—cells and one of which takes into account both the finite speed of
dendrites—will be formed inside the diffusional layer substance propagation in the bulk liquid and the deviation
[1,2,4,4. However, this diffusional layer degenerates in thefrom equilibrium at the solidification fronffpresent investi-
limits V—>VB [see Eq.(3.89)], and in the velocity range gation, Eq.(3.10], and the other model takes into account
V=V the constant undercooling will occur on the diffusion the deviation from equilibrium at the solidification front only
lengths[see curve 3 in Fig. ®)]. In the latter case, i.e., at [12]. Evidently, if the two extreme points marked in Fig. 7
V=V, the profile of undercooling T(£) manifests only on  near the valu&/=2 m/s are interpreted within the limits of
the heat lengthpsee Fig. $a)]. Thus a transition from diffu- experimental error as a complete partitionless solidification
sionlike growing structures to thermal-like ones can occur. Aresult, one can see that E@.10 gives quite a satisfactory
quite similar change in behavior of Ni-B dendrites has beerresult in comparison with the experiment. It should be noted
shown in the experiment by Ecklet al.[23]. This transition  that there is a considerable uncertainty in the choice of the
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curs. Also, it is necessary to make more exact the notion of
the diffusive speed/ 5. In the present investigation we as-
sumed that the diffusive speed at the solidification front
equals the diffusive speed in the bulk liquid. This assumption
may lead to discrepancy between the predictions of the
theory and the experiment if for an alloy the diffusion coef-
ficient and interatomic distance have essentially different
values at the solidification front and inside the bulk liquid.

It is also pertinent to note the remarkable experiments on
revealing chemical homogeneity of dendritic alloys. Mirosh-
nichenko points ouf7] the fact that in the splat cooling
process for the binary Al-Mg, Al-Mn, Cu-Sn, and Cu-Sbh
systems cooled at a rate above® Ks the concentration in
the core of dendrites equals the initial chemical composition
of alloys. In all alloys the concentration changed discontinu-
ously at a cooling rate equal to 4B/s. At the same cooling
rate the partition coefficierk which was defined as the ratio
between the solute concentration in the solid and in the lig-
uid at the interface changed sharply from the near equilib-
rium valuek, up tok=1 (a brief discussion about Mirosh-
nichenko’s experiment is given by Chernov in RES], p.

FIG. 6. The undercoolings at the flat solidification front of 196). The partition coefficienk=1 occurs at higher rates

Ag—1 wt % Cu alloy versus the dimensionless veloaitiyV 5.

[7].

It is evident that the analytical treatment of the function
“undercooling—dendritic growth velocity” at high cooling

value of the diffusive spee 5. For example, in Ref{31]
the range of the value of the diffusive speed is evaluated@tes[6,7] and from deeply undercooled alloy mel@3,29

within the limits of one ordefV5=0.4—4.0 m/s for Ag-Cu Ccan be made, if, according to the model developed in the
dilute alloys. In the works[35,36 when interpreting the WOrK, one takes into account the deviation from local equi-
experiments on Si-As alloy solidification, various modelsibrium at the liquid-solid interface and inside the bulk lig-
were used where the values of the diffusive speed were diflid. Unfortunately, this analytical calculation is difficult to
ferent from one another more than 12 times,Carry out at present as the existing functions defining the
V 5=0.035-0.46 m/s. For a satisfactory comparison with thecrystal growth shapéor example, one of these functions is
experiment(Fig. 7) we used a value of the diffusive speed @ So-called “lvantsov function,” see Ref$1,4,37) are
V5=1.2 m/s. Therefore in our opinion, for further quantita- based on the local equilibrium approximation. This makes it
tive correlations between the theory and experiment, a mor@ifficult to describe the experiment adequatgdg], and the
detailed investigation of the solute partitioning process isdefinition of the nonequilibrium crystal growth shape can
necessary. Particularly, it is necessary to obtain experimerieécome further development of the local-nonequilibrium

tally the rates of solidification under which the transition to model of alloy solidification.

complete solute trapping and partitionless solidification oc- It has also been shown in experimef@$ under cooling
rates 5<1CP K/s that in the melts of aluminum-magnum al-

loys the eutectic decomposition is suppressed. The super-
saturated solid solutions with the initial liquid chemical com-

1.0 N .
[ position of the alloy are formed. The sharp change in the
0.9 | O Si=9.0% As . crystallization mechanism proves that the cooling rate in-
4 creasing above the critical value leads to qualitative changes

0.8 . in kinetic and mass transport processes.

Thus the morphological transitions in growth forms and a

{ 7 change of solidification regimes occur at high undercoolings.
j/ 2 As it has been estimated by Herlaf®), the change of the
i growth regimes is connected with the attainment of the criti-
cal growth velocity which is equal to the atomic diffusive
speed.

All our theoretical results lend strong support to the idea
that the diffusive speed | is one of the most decisive pa-
rameters which phenomenologically represents the effect of
local nonequilibrium in the rapid solidification processes.
FIG. 7. Quantitative comparison “solidification velocity—solute WhenV=V g, solution(3.11b implies that the solute con-

centration ahead of the solidification front is undisturbed and
reaches the initial concentration of the alloy. The correct
definition of the solute layesy and the effective diffusion
coefficientD* also demonstrate the absence of the diffusion

PARTITION COEFFICIENT

M ) 1
R 1.0
INTERFACE VELOCITY (m/s)

3.0

partitioning function” for the present investigation, E¢3.10
(curve 1, and the dilute continuous growth moddl2] (curve 2
with the experimental dat§35] (symbolsO and A). k.=0.35,
VE=1.2 m/s.
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processes a¥=V§ [see Eqs(3.8), (3.9)]. This result is in VI. CONCLUSIONS

agreement with the physical meaning that a source of pertur- (i) | ocal nonequilibrium solidification of a binary alloy
bation, i.e., the liquid-solid interface, moving at a velocity has been investigated analytically in the steady-state regime
higher than the maximum speed of perturbations cannot dissf isotropic liquid-solid interface motion. Our model takes

turb the medium ahead of itself. Thus when the interfacdnto account the relaxation to local equilibrium of the solute
velocity V passes through the critical poidt=V 5, the un- flux in both phases and incorporates the diffusive speed as
; e he most important parameter governing the solute concen-
dercooling depends only on the temperature profile in the —."""™~> . o it
g dep y P P ration field. This approach leads to the non-Fickian diffusion

liguid and kinetic undercooling at the interfa¢eee Eq. : . e ) ,
. . . problem in rapid solidification described by a hyperbolic-
(4.3b], but it does not depend on the solute diffusive proﬁle.type partial differential equation.

At this point, a transition from diffusion-limited to purely ~ (ii) The most significant changes in the solidification re-
thermally controlled growth can occur. gimes under local-nonequilibrium conditions occur near the
The role which the diffusive speed plays in rapid solidi- critical pointV=VE, i.e., when the solidification veloci
fication processes can be favorably compared with the arquals the diffusive speedp in the liquid phase. AV=Vp
isotropy effect or the growth kinetics of a liquid-solid inter- a0 alloy solidifies completely partitionless with the initial

g . . . chemical composition.
face. Like the achievement by the front of the diffusive ™" )"0 it from the local equilibrium in the diffusion

speed, well-known effects such as the change of crystallogeiy and solute distribution av<VY contribute signifi-
graphic directions of growing crysta[89] or exchange of cantly to the total undercooling defined as the sum of ther-
the atomic kinetics mechanisii#0] offer breaks on the mal, kinetic, and caused by the solute distribution constitu-
curvesV versusAT at some critical undercoolingT*. It tional undercooling. A=V there is no influence of the
seems plausible that the nonmonotonous dependénas-  diffusion field, and the undercooling in the liquid will be
susAT observed in experiments on deep undercooled alloyi€fined only by thermal undercooling in the liquid and ki-
solidification [5,22,23,29 is governed by the set of listed hetic undercooling at the growth front. Thus &V, the

Therefore the detailed . tal study for el constitutional undercooling is absent and the flat solidifica-
causes. therelore the detailed experimental Study Tor €lUCkyn front will be absolutely stable relative to the constitu-

dation of the causes of the nonmonotonous dependence tional undercooling. The transition from a diffusion-limited
versusAT will require a special consideration of the theo- to a purely thermally and kinetically controlled solidification
retical approach. regime occurs.
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